Lesson plan (2020-2021) Chemistry Department

Odd Semester: Inorganic Chemistry B.SC –I Sem-1 **INORGANIC CHEMISTRY**

Week-2 Oct.	Basic Introduction and previous knowledge testing + Atomic Structure- Idea of de Broglie matter waves
Week -3 Oct.	Heisenberg uncertainty principle, atomic orbitals, quantum numbers.
Week -4 Oct.	Radial and angular wave functions and probability distribution curves, shapes of s, p, d orbitals
Week -1 Nov.	Aufbau and Pauli exclusion principles, Hund's multiplicity rule. Electronic configurations of the elements
Week -2 Nov.	DIWALI BREAK
Week -3 Nov.	ASSIGNMENT-1 PROBLEMS
Week -4 Nov.	Effective nuclear charge, Slater's rules.
Week-1 Dec.	Periodic Properties Atomic and ionic radii, ionization energy, electron affinity
Week-2 Dec.	Electronegativity –definition methods of determination or evaluation, trends in periodic table (in s &p block elements).

Week-3	ASSIGNMENT-2 + Covalent Bond
Dec.	Valence bond theory and its limitations, directional
	characteristics of covalent bond.
Week-4	Various types of hybridization and shapes of
Dec.	simple inorganic molecules and ions (BeF $_2$, BF $_3$, CH $_4$, PF $_5$, SF $_6$, IF $_7$,SO $_4^{-2-}$, ClO $_4^{}$)
Week-1	Valence shell electron pair repulsion (VSEPR) theory
Jan.	to NH_3 , H_3O^+ , SF_4 , CIF_3 , ICI_2^- and H_2O
Week-2	SESSIONAL
Jan.	
Week-3	MO theory of hetero nuclear (CO and NO) diatomic.
Jan.	Molecules Bond strength and bond energy percentage ionic
	character from dipole moment and electronegativity difference
Week-4	Ionic Solids Ionic structures (NaCl, CsCl, ZnS (Zinc Blende),
Jan.	CaF 2) radius ratio effect and coordination number, limitation of radius ratio rule
Week-1	Lattice defects, semiconductors, lattice energy (mathematical
Feb.	derivation excluded) and Born-Haber cycle
Week-2	Solvation energy and its relation with solubility of ionic solids,
Feb.	polarizing power and polarisability of ions, Fajan's rule.
Week-3	Revision
Feb.	
Week-4	EXAMINATION
Feb.	
L	

B.Sc.II Sem-3 Inorganic Chemistry lesson plan

October Week-1	Basic Indroduction of d-block elements
Week-2	Chemistry of d-Block elements Definition of transition elements, position in the periodic table, General characteristic properties of d-Block elements
Week-3	Comparison of properties of 3d elements with 4d and 5d elements with reference only to ionic radii, oxidation state
Week-4	Magnetic and spectral properties and stereo chemistry. Stability of various oxidation states and e.m.f (Latimer and Frost diagrams)
November Week-1	Structure and properties of some compounds of transition elements- TiO2, VOCI2, FeCI3, CuCI2 and Ni(CO)4 and Assignment 1
Week-2	DIWALI BREAK
Week-3	Coordination Compounds Werner's theory of coordination compounds, effective atomic number, chelates
Week-4	Nomenclature of coordination compounds, Isomerism in coordination compounds and Test

December	
Week-1	Valence bond theory of transition metal complexes and problem discussion .
Week-2	Non-aqueous solvents Physical properties of solvents and assignment-2
Week-3	Types of solvents and Test
Week-4	General characteristics of solvent.
January Week-1	Sessional
Week-2	Reactions in non aqueous solvents with reference to liquid NH3.
Week-3	Reactions of liquid NH3.
Week-4	Test
February Week-1	Reactions in non aqueous solvents with reference to liquid SO2

Week-2	Reactions of liquid SO2
Week -3	Revision
Week-4	Examination.

B.Sc III Sem-5 Inorganic Chemistry lesson plan

October	Basic Indroduction of Transition Metal complexes
Week-1	
Week-2	Metal-Ligand Bonding in Transition Metal complexes
	Limitations of valence bond theory, an elementary idea of
	crystal field theory,
Week-3	crystal field splitting in octahedral, tetrahedral and square planer complexes, factors affecting the crystal field
	parameters
Week-4	Thermodynamics and Kinetic Aspects of metal
	complexes - A brief outline of thermodynamic stability of
	metal complexes and factors affecting the stability, Irving
	William Series,
November	Assignment 1+ substitution reactions of square planer
Week-1	complexes of Pt[II], Trans effect.
Week-2	DIWALI BREAK
Week-3	Discussion+ Magnetic properties of Transition metal
	complexes Types of magnetic materials, magnetic
	susceptibility, method of determining magnetic

	susceptibility
Week-4	spin only formula, L-S coupling,
December	correlation of μ s and μ eff values, orbital contribution to
Week-1	magnetic moments
Week-2	Assignment 2+ application of magnetic moment data
	for 3d metal complexes.
Week-3	Test+Numericals
Week-4	Electronic spectra of Transition metal complexes-
	Selection rules for d-d transition, spectroscopic ground
	states
January	Sessional
Week-1	
Week-2	spectrochemical series, orgel energy level diagram for d1
	and d9 states
Week-3	Discussion+, Continue spectrochemical series, orgel
	energy level diagram for d1 and d9 states
Week-4	Revision of orgel energy digrams
February	Test
Week-1	
Week-2	discussion of electronic spectrum of [Ti(H2O)6]+3
	complex ion.
Week-3	Revision
Week-4	Examination

Physical Chemistry

Bsc- I Sem-1 Physical

Week-1	Introduction to States of Matter
Oct	

Week-2	Gaseous States
Oct	Maxwell's distribution of velocities and energies (derivation excluded) Calculation of root mean square velocity
Week-3 Oct	Average velocity and most probable velocity. Collision diameter, collision number, collision frequency and mean free path.
Week-4	Deviation of Real gases from ideal behaviour. Derivation of
Oct	Vander Waal's Equation of State
Week-1 Nov	Assignment-1,Its application in the calculation of Boyle's temperature (Compression factor).
Week-2 Nov	DIWALI BREAK
Week-3	Explanation of behaviour of real gases using Vander Waal's equation.
Nov	Numerical practice.
Week-4	Critical Phenomenon: Critical temperature, Critical pressure,
Nov	Critical volume and their determination.
Week-1 Dec	PV isotherms of real gases, continuity of states, the isotherms of Vander Waal'sequation.
Week-2	Assignment-2, relationship between critical constants and Vander
Dec	Waal"s constants
Week-3	Critical compressibility factor. The Law of corresponding states.
Dec	Liquefaction of gases. Numericals.
Week-4 Jan	Liquid States Structure of liquids. Properties of liquids – surface tension, Viscosity vapour pressure

Week-1 Jan	EXAMINATION
Week-2 Jan	Optical rotations and their determination. Numericals.
Week-3	
Jan	Solid State Classification of solids, Laws of crystallography – (i) Law of constancy of interfacial angles
Week-4	(ii) Law of rationality of indices(iii) Law of symmetry. Symmetry elements of crystals.
Week-1 Feb	Definition of unit cell & space lattice. Bravais lattices, crystal system X-ray diffraction by crystals.
	Derivation of Bragg equation. Determination of crystal structure of NaCl, KCl
Week-2 Feb	Liquid crystals: Difference between solids, liquids and liquid crystals,types of liquid crystals. Applications of liquid crystals.
Week-3 Feb	Revision
Week-4 Feb	Examination.

B.Sc II Sem-3 CHEMISTRY LESSON PLAN PHYSICAL CHEMISTRY

october Week-1	BASIC INDRODUCTION OF Thermodynamics
Week-2	Thermodynamics -Definition of thermodynamic terms: system, surrounding etc. Types of systems, intensive and extensive properties

Week-3	State and path functions and their differentials.
Week-4	Thermodynamic process. Thermodynamic equilibrium,
	Concept of heat and work.
November	Assignment 1+ First law of thermodynamics: statement,
Week-1	concepts of internal energy and enthalpy
Week-2	DIWALI BREAK
Week-3	Numericals+ Heat capacity, heat capacities at constant
	volume and pressure and their relationship
Week-4	Joule–Thomson coefficient for ideal gas and real gas and
	inversion temperature+ Test
December	Calculation of w,q, dU & dH for the expansion of ideal gases
Week-1	under isothermal + Numerical
Week-2	Calculation of w,q, dU & dH for the expansion of ideal gases
	under isothermal adiabatic conditions for reversible process.
	+ Assignment 2
Week-3	Chemical Equilibrium Equilibrium constant and free energy,
	concept of chemical potential, Thermodynamic derivation of
	law of chemical equilibrium
Week-4	Temperature dependence of equilibrium constant +
	Numerical
January	Sessional
Week-1	
Week-2	Clausius–Clapeyron equation and its applications
	+ discussion
Week-3	Distributioln Law Nernst distribution law – its
	thermodynamic derivation, Applications of distribution law:
	(i) Determination of degree of hydrolysis and hydrolysis
	constant of aniline hydrochloride

Week-4	(ii) Determination of equilibrium constant of potassium tri- iodide complex
February Week-1	Numerical
Week- 2	(iii) Process of extraction. More stress on numerical problems
Week-3	Revision
Week-4	Examination

B.Sc III Sem-5 Physical Chemistry lesson plan

[
October	Basic Indroduction of Quantum Mechanics
Week-1	
Week-2	Quantum Mechanics-1 Black-body radiation, Plank's
	radiation law, photoelectric effect, postulates of
	quantum mechanics, quantum mechanical operators,
	commutation relations
Week-3	Hamiltonian operator, Hermitian operator, average value
	of square of Hermitian as a positive quantity, Role of
	operators in quantum mechanics
Week-4	To show quantum mechanically that position and
	momentum cannot be predicated simultaneously,
	Determination of wave function & energy of a particle in
	one dimensional box.
November	Assignment 1+ Physical Properties and Molecular
Week-1	Structure Optical activity, polarization (Clausius –
	Mossotti equation- derivation excluded). Orientation of
	dipoles in an electric field, dipole moment, induced
	dipole moment, measurement of dipole moment-
	temperature method

Week-2	Diwali Break
Week-3	Numerical+ refractivity method, dipole moment and
	structure of molecules, Magnetic permeability, magnetic
	susceptibility and its determination
Week-4	Test + Application of magnetic susceptibility, magnetic
	properties – paramagnetism, diamagnetism and
	ferromagnetism.
December	Spectroscopy Introduction: Electromagnetic radiation,
Week-1	regions of spectrum, basic features of spectroscopy,
	statement of Born-oppenheimer approximation, Degrees
	of freedom.
Week-2	Assignment 2+ Rotational Spectrum : Selection rules,
	Energy levels of rigid rotator (semi-classical principles),
Week-3	Discussion+ rotational spectra of diatomic molecules,
	spectral intensity distribution using population
	distribution (Maxwell-Boltzmann distribution)
Week-4	determination of bond length and isotopic effect .
	Vibrational spectrum:, Energy levels of simple harmonic
	oscillator
January	Sessional+ Selection rules of simple harmonic oscillator
Week-1	
Week-2	Numericals+ pure vibrational spectrum of diatomic
	molecules,
Week-3	determination of force constant and qualitative relation
	of force constant and bond energy,
Week-4	idea of vibrational frequencies of different functional
	groups. Raman Spectrum- Concept of polarizibility,
February	pure rotational and pure vibrational Raman spectra of
Week-1	diatomic molecules, selection rules
Week-2	Quantum theory of Raman spectra+ Numerical problems
	of all spectroscopy.
	· · · ·

Week-3	Revision
Week-4	Examination

Organic Chemistry

B.SC I Sem-1 ORGANIC CHEMISTRY

WEEK-2 Oct	Introduction of some basic concepts of Organic
WEEK-3	Structure and Bonding
Oct	Localized and delocalized chemical bond, Vander Waals
	interactions, resonance: conditions, resonance effect and
	its applications
WEEK-4	Hyperconjugation, inductive effect, Electromeric effect &
Oct	their comparison.
Week-1	Stereochemistry of Organic Compounds
Nov	Concept of isomerism. Types of isomerism. Optical
	isomerism — elements of symmetry, molecular chirality
Week-2	Diwali Break
Nov	
Week-3	Assignment-1 + stereogenic centre, optical activity,
Nov	properties of enantiomers, chiral and achiral molecules
	with two stereogeniccentres.
Week-4	Diastereomers, threo and erythro diastereomers, meso
Nov	Compounds resolution of enantiomers, inversion,
	retention and racemization.
Week-1	Relative and absolute configuration, sequence rules, R &
Dec	S systems of nomenclature. Geometric isomerism
	— determination of configuration of geometric isomers

Week-2	E & Z system of nomenclature, Conformational
Dec	isomerism — conformational analysis of ethane and n-
	butane, conformations of cyclohexane, axial and
	equatorial bonds,
Week-3	Assignment-2 + Newman projection and Sawhorse
Dec	formulae, Difference between configuration and
	conformation.
Week-3	Mechanism of Organic Reactions
Dec	Curved arrow notation, drawing electron movements with
	arrows, half-headed and double-headed arrows. homolytic
	and heterolytic bond breaking. Types of reagent
	electrophiles and nucleophiles.
Week-4	Types of organic reactions. Energy considerations.
Dec	Reactive intermediates — carbocations, carbanions, free
	radicals carbenes, (formation, structure & stability).
Week-1	Alkanes and Cycloalkanes
Jan	IUPAC nomenclature of branched and unbranched
	alkanes, the alkyl group + TEST
Week-2	Sessional
Jan	
Week-3	Classification of carbon atoms in alkanes. Isomerism in
Jan	alkanes, sources. Methods of formation (with special
	reference to Wurtz reaction, Kolbe reaction
Week-4	Corey-House reaction and decarboxylation of carboxylic
Jan	acids), physical properties. Mechanism of free radical
	halogenation of alkanes: reactivity and selectivity.
Week-1	Cycloalkanes — nomenclature, synthesis of cycloalkanes
Feb	and their derivatives
Week-2	photochemical (2+2) cycloaddition reactions,
Feb	dehalogenation of α, ω -dihalides, pyrolysis of calcium or
	barium salts of dicarboxylic acids, Baeyer's strain theory
	and its limitations., theory of strainless rings.

Week-3	Revision
Feb	
Week-4	Examination.
Feb	

B.Sc II Sem-3 Organic Chemistry

Week-2	Basic Introduction of alcohols, Alcohols - Monohydric
Oct	alcohols :nomenclature
Week-3	Alcohols - Monohydric alcohols :nomenclature, methods of
Oct	formation by reduction of aldehydes, ketones, carboxylic
	acids and esters
Week-4	Hydrogen bonding. Acidic nature. Reactions of alcohols.
Oct	Dihydric alcohols — nomenclature, methods of formation,
	chemical reactions of vicinal glycols
Week-1	Oxidative cleavage [Pb(OAc)4 and HIO4] and pinacol-
Nov	pinacolone rearrangement
Week-2	Diwali Break
Nov	
Week-3	Assignment 1+, Phenols- Nomenclature, structure and
	o , , , , , , , , , , , , , , , , , , ,
Nov	bonding. Preparation of phenols
Nov	bonding. Preparation of phenols
Nov Week-4	bonding. Preparation of phenols Physical properties and acidic character. Comparative acidic
Nov Week-4	bonding. Preparation of phenols Physical properties and acidic character. Comparative acidic
Nov Week-4 Nov	bonding. Preparation of phenols Physical properties and acidic character. Comparative acidic strengths of alcohols and phenols
Nov Week-4 Nov Week-1	 bonding. Preparation of phenols Physical properties and acidic character. Comparative acidic strengths of alcohols and phenols Test+ resonance stabilization of phenoxide ion. Reactions
Nov Week-4 Nov Week-1 Dec.	 bonding. Preparation of phenols Physical properties and acidic character. Comparative acidic strengths of alcohols and phenols Test+ resonance stabilization of phenoxide ion. Reactions of phenols — electrophilic aromatic substitution
Nov Week-4 Nov Week-1 Dec. Week-2	 bonding. Preparation of phenols Physical properties and acidic character. Comparative acidic strengths of alcohols and phenols Test+ resonance stabilization of phenoxide ion. Reactions of phenols — electrophilic aromatic substitution Mechanisms of Fries rearrangement, Claisen

Week-3	Assignment2 + Epoxide- Synthesis of epoxides. Acid and
Dec.	base-catalyzed ring opening of epoxides, orientation of
	epoxide ring opening
Week-4	Reactions of Grignard and organo lithium reagents with
Dec.	epoxides.+ Ultraviolet (UV) absorption spectroscopy
	Absorption laws (Beer-Lambert law), molar absorptivity,
	presentation and analysis of UV spectra
Week-1	Discussion+ types of electronic transitions, effect of
Jan	conjugation. Concept of chromophore and auxochrome.
	Bathochromic, hypsochromic, hyperchromic and
	hypochromic shifts.
Week-2	SESSIONAL
Jan	
Week-3	UV spectra of conjugated enes and enones, Woodward-
Jan	Fieser rules, calculation of max of simple conjugated dienes
	and-unsaturated ketones.b Applications of UV
	Spectroscopy in structure elucidation of simple organic
	compounds.
Week-4	Carboxylic Acids & Acid Derivatives structure and bonding,
Jan	physical properties, acidity of carboxylic acids, effects of
	substituents on acid strength.
Week-1	Reactions of carboxylic acids. Hell-Volhard-Zelinsky
Feb	reaction. Reduction of carboxylic acids. Mechanism of
	decarboxylation. Relative stability of acyl derivatives
Week-2	Physical properties, inter conversion of acid derivatives by
Feb	nucleophilic acyl substitution. Mechanisms of esterification
	and hydrolysis (acidic and basic).
Week-3	Revision
Feb	
Week-4	Examinations
Feb	

B.Sc. III Sem-5 Organic Chemistry

Week-2 Oct	Basic Introduction of NMR Spectroscopy
Week-3	NMR Spectroscopy
Oct	Principle of nuclear magnetic resonance, the PMR spectrum, number of signals, peak areas.
Week-4	Equivalent and non-equivalent protons. Positions of signals
Oct	and chemical shift, shielding and deshielding of protons.
Week-1	Proton counting, splitting of signals and coupling constant.
Nov	Magnetic equivalence of protons. Discussion of PMR spectra of the molecules: ethyl bromide.
Week-2	Diwali Break
Nov	
Week-3 Nov	Assignment-1 + n-propyl bromide, isopropyl bromide 1,1- dibromoethane.
Week-4 Nov	1,1,2-tribromoethane, ethanol, acetaldehyde, ethyl acetate Toluene, benzaldehyde and acetophenone.
Week-1	Simple problems on PMR spectroscopy for structure
Dec	determination of organic compounds.+ TEST
Week-2	Carbohydrates
Dec.	Classification and nomenclature. Monosaccharides, mechanism of osazone formation.
Week-3	Assignment-2 + Inter conversion of glucose and fructose,
Dec.	chain lengthening and chain shortening of aldoses.

Week-4	Configuration of monosaccharides. Erythro and threo
Dec.	diastereomers. Conversion of glucose into mannose.
	Formation of glycosides
Week-1	Ethers and esters. Determination of ring size of glucose and
Jan.	fructose. Open chain and cyclic structure of D (+)-glucose &
	D (-) fructose.
Week-2	Sessional
Jan.	
Week-3	Mechanism of mutarotation.Structures of ribose and
Jan.	deoxyribose. An introduction to disaccharides maltose.
Jan.	deoxynoose. An introduction to disaccharides mattose.
Week-4	sucrose and lactose polysaccharides (starch and cellulose)
Jan.	without involving structure
	determination + Test
Week-1	Organometallic Compounds
Feb.	Organomagnesium compounds: the Grignard reagents-
TED.	formation, structure and chemical reactions.
Week-2	Organozinc compounds: formation and chemical reactions.
Feb.	Organolithium compounds: formation and chemical
	reactions.
Week-3	Revision
Feb	
Week-4	Examination
Feb	