Subject-Computer Programming and Thermodynamics Class-B.Sc-second Year (3rd Semester)

July,2019 3 rd Week	Computer organization, binary representation, algorithm development, flow-chart and their interpretation.
4 th Week	
	Fortran preliminaries: integer and floating points arithmetic expression, built-in-function, executable and non-executable statement, input and output statements,
5 th Week	
	Formats, If, Do and Go To statements, dimension arrays, statements function and function subprogram
August,2019 1 st Week	Program of natural numbers , range of the set of given numbers, ascending and descending order
2 nd Week	Mean and standard deviation, least square fitting of curve, roots of quadratic equation, product of two matrices
3 rd Week	Numerical integration (Trapezoidal rule and Simpson 1/3 rule)
4 th Week	Revision
5 th Week	class problems and class test

September ,2019 1 st Week	Thermodynamic system and Zeroth law of thermodynamics .first law of thermodynamics and its limitations, reversible and irreversible process . second law of thermodynamics and its significance ,Carnot theorem , Absolute scale of temperature
2 nd Week	Absolute scale and magnitude of each division on work scale and perfect gas scale , joule free expension, joule Thomson effect, joule Thomson experiment , conclusions and explanation, analytical treatment of Joule Thomson effect.
3 rd Week	Entropy ,calculations of entropy of reversible and irreversible process, T-S diagram, entropy of perfect gas, Nernst heat law
4 th Week	Liquefaction of gases (oxygen, air, hydrogen and helium), solidification of He below 4K, cooling by adiabatic demagnetization
October ,2019 1 st Week	Sessionals
2 nd Week	Derivation of Clausius – Clapreyron and clausius latent heat equation and their significance, specific heat of saturated vapours , phase diagram and triple point of a substance
3 rd Week	Maxwell thermodynamical relations, thermodynamical functions: Internal energy ,Helmholtz function, Enthalpy, Gibbs function
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019
Nov,2019 1 st Week	Application of Maxwell relation: relation b/w to specific heats of gas, derivation of clausius-clapeyron equation, variation of intrinsic energy with volume for (1) perfect gas (2) vander wall gas
2 nd Week	Derivation of Stefens law, deduction of theory of joule Thomson effect

Subject-Laser physics(Unit 3,Unit4), Nuclear Physics (Unit 3,Unit4) Class-B.Sc.(5th semester)

July,2019 3 rd Week	Absorption and emission of radiation, Main features of a laser: Directionality, high intensity, high degree of coherence,
4 th Week	spatial and temporal coherence, Einstein's coefficients and possibility of amplification, momentum transfer
5 th Week	life time of a level, kinetics of optical absorption ((two and three level rate equation, Fuchbauer landerburg formula).population inversion:
August,2019 1 st Week	A necessary condition for light amplification, resonance cavity, laser pumping, Threshold condition for laser emission, line broadening mechanism,
2 nd Week	homogeneous and inhomogeneous line broadening (natural, collision and Doppler broadening). He-Ne laser(Principle, Construction and working)
3 rd Week	RUBY laser (Principle, Construction and working),
4 th Week	Optical properties of semiconductor, Semiconductor laser (Principle, Construction and working),
5 th Week	Applications of lasers in the field of medicine and industry Revision of Unit 3

September ,2019 1 st Week	Revision of Unit 4
2 nd Week	Linear accelerator, Tendem accelerator, Cyclotron and Betatron accelerators
3 rd Week	Gas filled counters; Ionization chamber, proportional counter,
4 th Week	G.M. Counter (detailed study), Scintillation counter and semiconductor detector.
October ,2019 1 st Week	Sessionals
2 nd Week	Nuclear reactions, Elastic scattering, Inelastic scattering, Nuclear disintegration, Photonuclear reaction
3 rd Week	Radiative capture, Direct reaction, Heavy ion reactions and spallation Reactions. Conservation laws, Q-value and reaction threshold. Revision of Unit 3
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019
Nov,2019 1 st Week	Nuclear Reactors, General aspects of Reactor Design
2 nd Week	Nuclear fission and fusion reactors, (Principle, construction, working and use). Revision of unit 4

Subject-Wave and Optics Class-B.Sc(semester 3rd)

July,2019 3 rd Week	Interference by Division of wave front, Young's double slit experiment, Coherenc, conditions of Interference
4 th Week	Fresnel's biprism and its applications to determination of wavelength of sodium light and thickness of a mica sheet
5 th Week	Lloyd's mirror
August,2019 1 st Week	Difference between Bi-prism and Lloyd's mirror fringes, phase change on reflection
2 nd Week	Interference by division of Amplitude, thin films, plane parallel film
3 rd Week	Interference due to transmitted light, wedge shaped film, Newton's rings
4 th Week	Interferometers; Michelson interferometer and its applications to 1)standardization of a meter 2)determination of wavelength
5 th Week	Revision of Unit 1

September ,2019 1 st Week	Revision of unit 2
2 nd Week	Huygen's Fresnel's diffraction: Fresnel's assumptions and half period zones, rectilinear propagation of light
3 rd Week	zone plate, diffraction at a straight edge, rectangular slit and circular aperture,
4 th Week	diffraction due to a narrow slit and wire + Revision of Unit 3
October ,2019 1 st Week	Sessionals
2 nd Week	Fraunhoffer diffraction: single-slit diffraction, double-slit diffraction
3 rd Week	N-slit diffraction, plane transmission granting spectrum,
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019
Nov,2019 1 st Week	dispersive power of grating, limit of resolution, Rayleigh's criterion, resolving power of telescope and a grating. Differences between prism and grating spectra.
2 nd Week	Revision of unit 4

Subject-CLASSICAL MECHANICS Class-B.Sc.-First Year (1st Semester)

July,2019 3 rd Week	Unit 1: Basic concepts of Classical mechanics Mechanics of single and system of particles, Conversion law of linear momentum,
4 th Week	Conversion law of Angular momentum and mechanical energy for a particle and a system of particles,
5 th Week	Centre of Mass and equation of motion
August,2019 1 st Week	Constrained Motion, Numerical problems and Revision
2 nd Week	Unit2: Generalized Notations Degrees of freedom and Generalized coordinates, Transformation equations, Generalized Displacement
3 rd Week	Generalized Velocity, Acceleration, Momentum, Force and Potential, Hamilton's variational principle
4 th Week	Lagrange's equation of motion from Hamilton's principle, Linear Harmonic oscillator, Simple pendulum, Atwood's machine.
5 th Week	Numerical problems and Revision.

September ,2019 1 st Week	Unit 3: Theory of relativity Frame of reference, limitation of Newton's law of motion, Inertial frame of reference, Galilean transformation, Frame of reference with linear acceleration
2 nd Week	Classical relativity-Galilean invariance, Transformation equation for a frame of reference- inclined to an inertial frame and Rotating frame of reference,
3 rd Week	Non-inertial frames-The accelerated frame of reference and Rotating frame of reference,
4 th Week	Numericals and short Answers
October ,2019 1 st Week	Sessionals
2 nd Week	Effect of centrifugal and coriolis forces due to Earth's rotation, Fundamental frame of reference, Michelson- Morley's experiment, concept of Einstein's relativity.
3 rd Week	Unit 4: Applications of theory of relativity Special theory of relativity, Lorentz co-ordinate and physical significance of Lorentz invariance
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019
Nov,2019 1 st Week	Length Contraction, Time Dilation, Twin Paradox, Velocity addition theorem, Variation of mass with velocity, Mass energy equivalence
2 nd Week	Transformation of relativistic momentum and energy, relation between relativistic momentum and energy, Mass, velocity, momentum and energy of zero rest mass.

Subject-Computer Programming and Thermodynamics Class-B.Sc-second Year (3rd Semester)

July,2019 3 rd Week	Computer organization, binary representation, algorithm development, flow-chart and their interpretation.
4 th Week	
	Fortran preliminaries: integer and floating points arithmetic expression, built-in-function, executable and non-executable statement, input and output statements,
5 th Week	
	Formats, If, Do and Go To statements, dimension arrays, statements function and function subprogram
August,2019 1 st Week	Program of natural numbers , range of the set of given numbers, ascending and descending order
2 nd Week	Mean and standard deviation, least square fitting of curve, roots of quadratic equation, product of two matrices
3 rd Week	Numerical integration (Trapezoidal rule and Simpson 1/3 rule)
4 th Week	Revision
5 th Week	class problems and class test

September ,2019 1 st Week	Thermodynamic system and Zeroth law of thermodynamics .first law of thermodynamics and its limitations, reversible and irreversible process . second law of thermodynamics and its significance ,Carnot theorem , Absolute scale of temperature
2 nd Week	Absolute scale and magnitude of each division on work scale and perfect gas scale , joule free expension, joule Thomson effect, joule Thomson experiment , conclusions and explanation, analytical treatment of Joule Thomson effect.
3 rd Week	Entropy ,calculations of entropy of reversible and irreversible process, T-S diagram, entropy of perfect gas, Nernst heat law
4 th Week	Liquefaction of gases (oxygen, air, hydrogen and helium), solidification of He below 4K, cooling by adiabatic demagnetization
October ,2019 1 st Week	Sessionals
2 nd Week	Derivation of Clausius – Clapreyron and clausius latent heat equation and their significance, specific heat of saturated vapours , phase diagram and triple point of a substance
3 rd Week	Maxwell thermodynamical relations, thermodynamical functions: Internal energy ,Helmholtz function, Enthalpy, Gibbs function
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019
Nov,2019 1 st Week	Application of Maxwell relation: relation b/w to specific heats of gas, derivation of clausius-clapeyron equation, variation of intrinsic energy with volume for (1) perfect gas (2) vander wall gas
2 nd Week	Derivation of Stefens law, deduction of theory of joule Thomson effect

Subject-Electricity Class-B.Sc- First Year (1ST Semester)

July,2019 3 rd Week	Unit I: Vector background and Electric field Gradient of a scalar and its physical significance, Line, Surface and Volume integrals of a vector and their physical significance
4 th Week	Flux of a vector field, Divergence and curl of a vector and their physical significance, Gauss's divergence theorem, Stoke's theorem.
5 th Week	Derivation of electric field E from potential as gradient, Derivation of Laplace and Poisson equations, Electric flux
August,2019 1 st Week	Gauss's Law, Mechanical force of charged surface, Energy per unit volume. Revision
2 nd Week	Magnetic induction, Magnetic flux, Solenoidal nature of vector field of induction, properties of B (i) Div (B)=0 (ii) Curl (B)=μJ
3 rd Week	Electronic theory of dia and paramagnetism, Domain theory of ferromagnetism (Langevin's theory)
4 th Week	Cycle of magnetization- hystresis loop (Energy dissipation, Hystresis loss and importance of Hystresis Curve)
5 th Week	Unit 3: Electromagnetism Maxwell equations and their derivations, Displacement current, Vector and Scalar potentials

September ,2019 1 st Week	Boundary conditions at interface between two different media, Propagation of electromagnetic wave (Basic idea, no derivation), Poynting vector and Poynting theorem.
2 nd Week	Revision of unit 1 and class test
3 rd Week	Unit 4: A. C. Analysis A.C. circuit analysis using complex variable with (a) Capacitance and Resistance (CR)(b) Resistance and Inductance (LR)
4 th Week	Revision of unit 1 and class test
October ,2019 1 st Week	sessional
2 nd Week	(c) Capacitance and Inductance (LC) and (d) Capacitance, Inductance and Resistance (LCR),
3 rd Week	Series and parallel resonance circuit, Sessional Discussion
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019
Nov,2019 1 st Week	Quality factor (sharpness of resonance). Revision of Unit 3
2 nd Week	Revision of Unit 4

Subject-CLASSICAL MECHANICS

Class-B.Sc.-First Year (1st Semester)

July,2019 3 rd Week	Unit 1: Basic concepts of Classical mechanics Mechanics of single and system of particles, Conversion law of linear momentum,
4 th Week	Conversion law of Angular momentum and mechanical energy for a particle and a system of particles,
5 th Week	Centre of Mass and equation of motion
August,2019 1st Week	Constrained Motion, Numerical problems and Revision
2 nd Week	Unit2: Generalized Notations Degrees of freedom and Generalized coordinates, Transformation equations, Generalized Displacement
3 rd Week	Generalized Velocity, Acceleration, Momentum, Force and Potential, Hamilton's variational principle
4 th Week	Lagrange's equation of motion from Hamilton's principle, Linear Harmonic oscillator, Simple pendulum, Atwood's machine.
5 th Week	Numerical problems and Revision.

September ,2019 1 st Week	Unit 3: Theory of relativity Frame of reference, limitation of Newton's law of motion, Inertial frame of reference, Galilean transformation, Frame of reference with linear acceleration
2 nd Week	Classical relativity-Galilean invariance, Transformation equation for a frame of reference- inclined to an inertial frame and Rotating frame of reference,
3 rd Week	Non-inertial frames-The accelerated frame of reference and Rotating frame of reference,
4 th Week	Numericals and short Answers
October ,2019 1 st Week	Sessionals
2 nd Week	Effect of centrifugal and coriolis forces due to Earth's rotation, Fundamental frame of reference, Michelson- Morley's experiment, concept of Einstein's relativity.
3 rd Week	Unit 4: Applications of theory of relativity Special theory of relativity, Lorentz co-ordinate and physical significance of Lorentz invariance
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019
Nov,2019 1 st Week	Length Contraction, Time Dilation, Twin Paradox, Velocity addition theorem, Variation of mass with velocity, Mass energy equivalence
2 nd Week	Transformation of relativistic momentum and energy, relation between relativistic momentum and energy, Mass, velocity, momentum and energy of zero rest mass.

Subject-Quantum Mechanics (unit 1 & 2) And Nuclear Physics (Unit 1 & 2) Class-B.Sc- Third Year (3rd Semester)

July,2019	Unit I: Nuclear Structure and Properties of Nuclei				
3 rd Week	Determination of size of nuclei by Rutherford				
	Back Scattering, Nuclear composition (p-e and p-n hypotheses),				
4 th Week	Nuclear properties; Nuclear size, spin, parity, statistics, magnetic dipole moment,				
1 ,, 0011	quadruple moment (shape concept). mass and binding energy, systematic of nuclear				
	binding energy, nuclear stability				
	Determination of mass by Dain Duides Dain Duides and London mass spectro graph				
_41.	Determination of mass by Bain-Bridge, Bain-Bridge and Jordan mass spectrograph.				
5 th Week	Determination of charge by Mosley Law.				
August,2019	Unit II: Nuclear Radiation decay Processes				
1st Week	Radiation interaction				
	Interaction of heavy charged particles (Alpha particles); Energy loss of heavy charged				
	particle (idea of Bethe formula, no derivation), Range and straggling of alpha particles.				
2 nd Week	Geiger-Nuttal law. Interaction of light charged particle (Beta-particle), Energy loss of				
_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	beta-particles (ionization), Range of electrons, absorption of beta-particles				
and	Interaction of Gamma Ray; Passage of Gamma radiations through matter				
3 rd Week	(Photoelectric, Compton and pair production effect) electron-positron annihilation.				
	Absorption of Gamma rays (Mass attenuation coefficient) and its application.				
	Trosorption of Gamma rays (Mass attenuation coefficient) and its application.				
4 th Week	Alpha disintegration and its theory Engratics of alpha decay Origin of cartings				
- TOOK	Alpha-disintegration and its theory. Energetics of alpha-decay, Origin of continuous				
	beta spectrum (neutrino hypothesis), types of beta-decay and energetics of beta-decay.				
	Nature of gamma rays, Energetics of gamma rays.				
41.					
5 th Week	Revision				

September ,2019 1 st Week	Unit I: Origin quantum physics (Experimental basis) Overview, scale of quantum physics, boundary between classical and quantum phenomena, Photon, Photoelectric effect, Compton effect (theory and result), Frank-Hertz experiment, de-Broglie hypothesis. Davisson and Germer experiment, • G.P.Thomson experiment. Phase velocity, group					
2 nd Week	velocity and their relation. Heisenberg's uncertainty principle.					
3 rd Week	Time energy and angular momentum, position uncertainty. Uncertainty principle from de Broglie wave. (Wave-particle duality). Gamma Ray Microscope, Electron diffraction from a slit.					
4 th Week	Derivation of 1-D time-dependent Schrodinger wave equation (subject to force, free particle). Time-independent Schrodinger wave equation, eigen values, eigen functions, wave functions and its significance.					
October ,2019 1st Week	Sessionals					
2 nd Week	Orthogonality and Normalization of function, concept of observer and operator. Expectation values of dynamical quantities, probability current density. Revision					
3 rd Week	Unit II: Application of Schrodinger wave equation: (i) Free particle in one-dimensional box (solution of Schrodinger wave equation, eigen functions, eigen values, quantization of energy and momentum, nodes and anti nodes, zero point energy). ii) One dimensional step potential E > Vo (Reflection and Transmission coefficient)					
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019					
Nov,2019 1 st Week	(iii) One dimensional step potential E < Vo (penetration depth calculation). (iv) One dimensional potential barrier, E > Vo (Reflection and Transmission coefficient)					
2 nd Week	 (v) One-dimensional potential barrier, E < Vo (penetration or tunneling coefficient). (vi) Solution of Schrodinger equation for harmonic oscillator (quantization of energy, Zero-point energy, wave equation for ground state and excited states). Revision 					

Subject-Laser physics(Unit 3,Unit4), Nuclear Physics (Unit 3,Unit4) Class-B.Sc.(5th semester)

July,2019 3 rd Week	Absorption and emission of radiation, Main features of a laser: Directionality, high intensity, high degree of coherence,
4 th Week	spatial and temporal coherence, Einstein's coefficients and possibility of amplification, momentum transfer
5 th Week	life time of a level, kinetics of optical absorption ((two and three level rate equation, Fuchbauer landerburg formula).population inversion:
August,2019 1 st Week	A necessary condition for light amplification, resonance cavity, laser pumping, Threshold condition for laser emission, line broadening mechanism,
2 nd Week	homogeneous and inhomogeneous line broadening (natural, collision and Doppler broadening). He-Ne laser(Principle, Construction and working)
3 rd Week	RUBY laser (Principle, Construction and working),
4 th Week	Optical properties of semiconductor, Semiconductor laser (Principle, Construction and working),
5 th Week	Applications of lasers in the field of medicine and industry Revision of Unit 3

September ,2019 1 st Week	Revision of Unit 4			
2 nd Week	Linear accelerator, Tendem accelerator, Cyclotron and Betatron accelerators			
3 rd Week	Gas filled counters; Ionization chamber, proportional counter,			
4 th Week	G.M. Counter (detailed study), Scintillation counter and semiconductor detector.			
October ,2019 1 st Week	Sessionals			
2 nd Week	Nuclear reactions, Elastic scattering, Inelastic scattering, Nuclear disintegration, Photonuclear reaction			
3 rd Week	Radiative capture, Direct reaction, Heavy ion reactions and spallation Reactions. Conservation laws, Q-value and reaction threshold. Revision of Unit 3			
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019			
Nov,2019 1 st Week	Nuclear Reactors, General aspects of Reactor Design			
2 nd Week	Nuclear fission and fusion reactors, (Principle, construction, working and use). Revision of unit 4			

Subject-Wave and Optics Class-B.Sc(semester 3rd)

July,2019 3 rd Week	Interference by Division of wave front, Young's double slit experiment, Coherenc, conditions of Interference
4 th Week	Fresnel's biprism and its applications to determination of wavelength of sodium light and thickness of a mica sheet
5 th Week	Lloyd's mirror
August,2019 1 st Week	Difference between Bi-prism and Lloyd's mirror fringes, phase change on reflection
2 nd Week	Interference by division of Amplitude, thin films, plane parallel film
3 rd Week	Interference due to transmitted light, wedge shaped film, Newton's rings
4 th Week	Interferometers; Michelson interferometer and its applications to 1)standardization of a meter 2)determination of wavelength
5 th Week	Revision of Unit 1

September ,2019 1 st Week	Revision of unit 2				
2 nd Week	Huygen's Fresnel's diffraction: Fresnel's assumptions and half period zones, rectilinear propagation of light				
3 rd Week	zone plate, diffraction at a straight edge, rectangular slit and circular aperture,				
4 th Week	diffraction due to a narrow slit and wire + Revision of Unit 3				
October ,2019 1st Week	Sessionals				
2 nd Week	Fraunhoffer diffraction: single-slit diffraction, double-slit diffraction				
3 rd Week	N-slit diffraction, plane transmission granting spectrum,				
4 th Week	Vacations w.e.f. 24 th Oct to 30 th oct,2019				
Nov,2019 1 st Week	dispersive power of grating, limit of resolution, Rayleigh's criterion, resolving power of telescope and a grating. Differences between prism and grating spectra.				
2 nd Week	Revision of unit 4				