Lesson plan for the odd semester November to February 2020-21

Subject-CLASSICAL MECHANICS

Class-B.Sc.-First Year (1st Semester)

November,2020 3 rd Week	Unit 1: Basic concepts of Classical mechanics Mechanics of single and system of particles, Conversion law of linear momentum,					
4 th Week	Conversion law of Angular momentum and mechanical energy for a particle and a system of particles,					
December,2020 1 st Week	Centre of Mass and equation of motion Constrained Motion, Numerical problems and Revision					
2 nd Week	Unit2: Generalized Notations Degrees of freedom and Generalized coordinates, Transformation equations, Generalized Displacement					
3 rd Week	Generalized Velocity, Acceleration, Momentum, Force and Potential, Hamilton's variational principle					
4 th Week	Lagrange's equation of motion from Hamilton's principle, Linear Harmonic oscillator, Simple pendulum, Atwood's machine.					
5 th Week	Numerical problems and Revision.					
January ,2021 1 st Week	Unit 3: Theory of relativity Frame of reference, limitation of Newton's law of motion, Inertial frame of reference, Galilean transformation, Frame of reference with linear acceleration					
2 nd Week	Classical relativity-Galilean invariance, Transformation equation for a frame of reference- inclined to an inertial frame and Rotating frame of reference,					
3 rd Week	Non-inertial frames-The accelerated frame of reference and Rotating frame of reference,					
4 th Week	Numerical and short Answers Sessionals					
February ,2021 1 st Week	Effect of centrifugal and coriolis forces due to Earth's rotation, Fundamental frame of reference, Michelson- Morley's experiment, concept of Einstein's relativity.					
2 nd Week	Unit 4: Applications of theory of relativity Special theory of relativity, Lorentz co-ordinate and physical significance of Lorentz invariance					
3 rd Week	Length Contraction, Time Dilation, Twin Paradox, Velocity addition theorem, Variation of mass with velocity, Mass energy equivalence					
4 th Week	Transformation of relativistic momentum and energy, relation between relativistic momentum and energy, Mass, velocity, momentum and energy of zero rest mass.					

Subject-Electricity Class-B.Sc- First Year (1st Semester)

November,	Unit I: Vector background and Electric field					
2020 3 rd Week	Introduction of vector and scalar fields					
o week	Gradient of a scalar and its physical significance					
4 th Week	Line, Surface and Volume integrals of a vector and their physical significance, Flux of a vector field,					
December,2020 1 st Week	Divergence and curl of a vector and their physical significance, Gauss's divergence theorem,					
2 nd Week	Stokes theorem, Derivation of electric field E from potential as gradient					
3 rd Week	Derivation of Laplace and Poisson equations, Electric flux Gauss's Law					
4 th Week	Mechanical force of charged surface, Energy per unit volume. Revision					
5 th Week	Magnetic induction, Magnetic flux, Solenoidal nature of vector field of induction, properties of B (i) Div (B)=0 (ii) Curl (B)=μJ					
January,2021 1 st Week	Electronic theory of dia and paramagnetism, Domain theory of ferromagnetism (Langevin's theory)					
2 nd Week	Cycle of magnetization- hysteresis loop (Energy dissipation, Hysteresis loss and importance of Hysteresis Curve)					
3 rd Week	Unit 3: Electromagnetism Maxwell equations and their derivations, Displacement current, Vector and Scalar potentials					
4 th Week	Boundary conditions at interface between two different media, Propagation of electromagnetic wave (Basic idea, no derivation), Poynting vector and Poynting theorem.					
February ,2021 1 st Week	Unit 4: A. C. Analysis A.C. circuit analysis using complex variable with (a) Capacitance and Resistance (CR) (b) Resistance and Inductance (LR)					
2 nd Week	(c) Capacitance and Inductance (LC) and (d) Capacitance, Inductance and Resistance (LCR),					
3 rd Week	Series and parallel resonance circuit, Sessional					
4 th Week	Quality factor (sharpness of resonance). Revision					

Subject-Computer Programming and Thermodynamics Class-B.Sc-second Year (3rd Semester)

Teacher Name: Meenu Sharma

October,2020	UNIT-1: Computer Programming					
2 nd Week	Computer organization, binary representation, algorithm development					
2 WCCK	Computer organization, binary representation, algorithm development					
3 rd Week	Flow-chart and their interpretation. FORTRAN preliminaries: integer and floating points					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	arithmetic expression					
	built-in-function, executable and non-executable statement, input and output statements					
4 th Week	built-in-function, executable and non-executable statement, input and output statements					
_th	Formats, IF, Do and Go To statements, dimension arrays, statements function and					
5 th Week	function subprogram					
November,2020 1 st Week	UNIT –2: Applications of FORTRAN programming					
1 week	Algorithm, Flow Chart and Programming for Print out of natural numbers, Range of the set					
2 nd Week	of given numbers					
2 WCCK	Ascending and descending order, Mean and standard deviation,					
3 rd Week	Least square fitting of curve, Roots of quadratic equation					
4th xxv	Product of two matrices, Numerical integration (Trapezoidal rule and Simpson 1/3 rule) .					
4 th Week	Devision					
December,2020 1 st Week	Revision					
1 WCCK	class problems and class test					
2 nd Week	UNIT-3: Thermodynamics-I					
	Thermodynamic system and Zeroth law of thermodynamics .first law of thermodynamics					
	and its limitations, reversible and irreversible process. second law of thermodynamics and its significance, Carnot theorem, Absolute scale of					
	temperature, Absolute scale and magnitude of each division on work scale and perfect gas					
3 rd Week	scale,					
4 th Week	Joule free expansion, joule Thomson effect, joule Thomson experiment , conclusions and					
4 WEEK	explanation, analytical treatment of Joule Thomson effect.					
5 th Week	Entropy ,calculations of entropy of reversible and irreversible process, T-S diagram,					
	entropy of perfect gas, Nernst heat law					
January,2021	Liquefaction of gases (oxygen, air, hydrogen and helium), solidification of He below					
1 st Week	,cooling by adiabatic demagnetization					
2 nd Week	Sessionals Revision					
2 WEEK	Class Test					
3 rd Week	UNIT-4: Thermodynamics-II Derivation of Clausius-Clapeyron and Clausius latent heat					
	equation and their significance, specific heat of saturated vapours,					
.th	Phase diagram and triple point of a substance, development of Maxwell thermodynamical					
4 th Week	relations.					
Feb,2021 1 st Week	Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy (H),					
1 week	Gibbs function (G) and the relations between them, derivation of Maxwell					
	thermodynamical relations from thermodynamical functions, Derivation of Clausius-Clapeyron and Clausius equation, variation of intrinsic energy with					
2 nd Week	volume for (i) perfect gas (ii) Vander wall gas (iii) solids and liquids					
	Derivation of Stefan's law, adiabatic compression and expansion of gas & deduction of					
ard xxv	theory of Joule Thomson effect.					
3 rd Week	,					
4 th Week	Revision					
T WEEK						

Subject-Wave and Optics Class-B.Sc (semester 3rd)

Teacher Name: Meenu Sharma

October,2020	Unit 1: Interference I				
2 nd Week					
2 WEEK	Interference by Division of wave front, Young's double slit experiment,				
3 rd Week	Coherence, conditions of Interference.				
4 th Week	Fresnel's biprism and its applications to determination of wavelength of sodium light and				
	thickness of a mica sheet				
5 th Week	Lloyd's mirror				
	Class Test				
November,2020	Difference between Bi-prism and Lloyd's mirror fringes, phase change on reflection				
1st Week					
	Unit 2: Interference II				
2 nd Week	Interference by division of Amplitude, thin films, plane parallel film				
	Revision of Unit 1				
3 rd Week	nevision of one 1				
4 th Week	Interference due to transmitted light, wedge shaped film				
December,2020	Nowton's rings				
1 st Week	Newton's rings				
1 WEEK	Interferometers; Michelson interferometer and its applications to				
2 nd Week	1)standardization of a meter				
	2)determination of wavelength				
	Revision of unit 2				
3 rd Week					
ath way	Unit- 3: Diffraction I				
4 th Week	Huygens's Fresnel's diffraction: Fresnel's assumptions and half period zones,				
5 th Week	rectilinear propagation of light				
5 Week	zone plate, diffraction at a straight edge, rectangular slit and circular aperture,				
January ,2021	diffraction due to a narrow slit and wire				
1st Week					
- nd	Revision of Unit 3				
2 nd Week	Sessionals				
3 rd Week	Unit -4: Diffraction II				
3 WEEK	Fraunhoffer diffraction: single-slit diffraction				
4 th Week	Fraunhoffer diffraction :double-slit diffraction				
E-1-2021	NT 1' 1'CC '				
Feb,2021 1 st Week	N-slit diffraction,				
1 WEEK	plane transmission granting spectrum,				
	dispersive power of grating, limit of resolution,				
2 nd Week	Rayleigh's criterion				
3	resolving power of telescope and a grating. Differences between Prism and grating				
3 rd Week	spectra.				
4 th Week	Revision of unit 4				
4 vv eek					

Subject-Quantum and Laser Physics Class-B.Sc- Third Year (5th Semester)

October,2020	Unit I: Origin quantum physics (Experimental basis)				
2 nd Week	Overview, scale of quantum physics, boundary between classical and quantum				
	phenomena, Photon, Photoelectric effect, Compton effect (theory and result), Fran				
	Hertz experiment, de-Broglie hypothesis.				
3rd Week	Davisson and Germer experiment, G.P.Thomson experiment. Phase velocity, group				
Sid Week	velocity and their relation. Heisenberg's uncertainty principle.				
	Time energy and angular momentum, position uncertainty. Uncertainty principle				
4 th Week	from de Broglie wave. (Wave-particle duality). Gamma Ray Microscope, Electron				
	diffraction from a slit.				
	Derivation of 1-D time-dependent Schrodinger wave equation (subject to force, free				
5 th Week	particle).				
	particle).				
November,2020	Time-independent Schrodinger wave equation, Eigen values, Eigen functions, wave				
1st Week	functions and its Significance.				
and xxv	Orthogonality and Normalization of function, concept of observer and Operator.				
2 nd Week	Expectation values of dynamical quantities, probability current density.				
3 rd Week					
3 WEEK	Revision and Class Test				
4 th Week	Unit II: Application of Schrodinger wave equation:				
	(i) Free particle in one-dimensional box (solution of Schrodinger wave				
	equation, Eigen functions, Eigen values, quantization of energy and				
	momentum, nodes and anti nodes, zero point energy).				
December,2020	ii) One dimensional step potential E > Vo (Reflection and Transmission				
1 st Week	coefficient)				
	(iii) One dimensional step potential E < Vo (penetration depth calculation).				
2 nd Week	(iv) One dimensional potential barrier, E > Vo (Reflection and Transmission				
2 week	coefficient)				
	(v) One-dimensional potential barrier, E < Vo (penetration or tunneling coefficient).				
	(vi) Solution of Schrodinger equation for harmonic oscillator (quantization of				
3 rd Week	energy, Zero-point energy, wave equation for ground state and excited states).				
4 th Week	Revision and Class Test				
eth eer	Unit III: Laser Physics –I				
5 th Week	Absorption and emission of radiation, Main features of a laser: Directionality, high				
	intensity, high degree of coherence, spatial and temporal coherence,				
January ,2021	Einstein's coefficients and possibility of amplification, momentum transfer, life time				
1 st Week	of a level,				
	kinetics of optical absorption ((two and three level rate equation, Fuchbauer				
2 nd Week	landerburg formula)				
- rd	population inversion: A necessary condition for light amplification, resonance				
3 rd Week	cavity, laser pumping, Threshold condition for laser emission, line broadening				
	mechanism				
4 th Week					
- vveek	homogeneous and inhomogeneous line broadening (natural, collision and				
	Doppler broadening). Revision				
E 1 4004					
Feb,2021	Unit IV: Laser Physics – II				
1 st Week	He-Ne laser and RUBY laser (Principle, Construction and working),				

2 nd Week	Optical properties of semiconductor, Semiconductor laser (Principle, Construction and working),
3 rd Week	Applications of lasers in the field of medicine and industry. Sessional
4 th Week	Revision

Subject-Quantum and Laser Physics Class-B.Sc- Third Year (5th Semester)

Teacher Name.						
October,2020	Unit I: Nuclear Structure and Properties of Nuclei					
2 nd Week	Nuclear composition (p-e and p-n hypotheses), Nuclear properties; Nuclear size,					
	spin, parity					
	Statistics, magnetic dipole moment, quadruple moment (shape concept).					
3rd Week						
_	Determination of mass by Bain-Bridge, Bain-Bridge and Jordan mass spectrograph.					
4 th Week	Determination of charge by Mosley Law.					
	Determined and first of successful to Devil and only					
	Determination of size of nuclei by Rutherford					
5 th Week	Back Scattering. mass and binding energy, systematic of nuclear binding energy,					
	nuclear stability					
November,2020	Revision and Class Test					
1 st Week						
	Unit II: Nuclear Radiation decay Processes					
	Alpha-disintegration and its theory. Energetics of alpha-decay, Origin of continuous					
2 nd Week	beta Spectrum (neutrino hypothesis), types of beta-decay and energetics of beta-					
	decay. Nature Of gamma rays, Energetics of gamma rays.					
	Radiation interaction					
3 rd Week	Interaction of heavy charged particles (Alpha particles); Energy loss of heavy					
C VV COL	charged particle (idea of Bethe formula, no derivation),					
4 th Week	Range and straggling of alpha particles, Geiger-Nuttal law.					
December,2020						
1 st Week	Interaction of light charged particle (Beta-particle), Energy loss of					
1 vveek	Beta-particles (ionization), Range of electrons, absorption of beta-particles.					
	Interaction of Gamma Ray;					
and xx	Passage of Gamma radiations through matter (Photoelectric, Compton and					
2 nd Week	pair production effect) electron-positron annihilation. Absorption of Gamma rays					
	(Mass Attenuation coefficient) and its application.					
ord xxy	Revision and Class Test					
3 rd Week	Revision and Class Test					
4th xxx x	Unit III: Nuclear Accelerators					
4 th Week	Linear accelerator, Tandem accelerator,					
ath xxx	Emour accordator, Tunadin accordator,					
5 th Week	Cyclotron and Betatron accelerators.					
January ,2021	Nuclear Radiation Detectors.					
1 st Week						
1 VVCCK	Gas filled counters; Ionization chamber,					
2 nd Week	proportional counter, G.M. Counter (detailed study),					
3 rd Week	Scintillation counter and semiconductor detector					
4 th Week	Revision and Class Test					
Feb,2021	Unit IV:					
1 st Week	Nuclear reactions.					
	Nuclear reactions, Elastic scattering, Inelastic scattering, Nuclear disintegration,					
	Photonuclear reaction, Radiative capture, Direct reaction, Heavy ion reactions and					
	Spallation Reactions.					
	Conservation laws, Q-value and reaction threshold.					
2 nd Week						
	Nuclear Reactors.					
,	Nuclear Reactors, General aspects of Reactor Design. Nuclear fission and fusion					
3 rd Week	reactors,(Principle, construction, working and use).					
	Revision					
4 th Week						